

0040-4039(94)01865-0

Prelacinan-7-ol, a Novel Sesquiterpene from Rudbeckia laciniata

Yukiharu Fukushi*, Chie Yajima and Junya Mizutani

Department of Applied Bioscience, Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo 060, Japan

Abstract : A new tricyclic sesquiterpene, prelacinan-7-ol (1) was isolated from the roots of *Rudbeckia laciniata*. The structure was determined on the base of the extensive 2D NMR analyses The absolute configuration was established by derivatizing to axially chiral 2-(2'-methoxy-1'-naphthyl)-3,5-dichlorobenzoic acid (MNCB, 3) and 2'-methoxy-1,1'binaphthyl-2-carboxylic acid (MBNC, 4) esters. For the same purpose, "Modified Mosher's method" was inapplicable

The chemical constituents of *Rudbeckia laciniata* L. (Asteraceae) have previously been studied in some detail¹. This weed was naturalized in Japan, and forms colonies along roadsides and field. Our reinvestigation with allelopathic interest gave a phytotoxic and unique sesquiterpene alcohol (1).

The ethyl acetate extracts (7g) from 2kg (fr. wt.) of *R. laciniata* roots were fractionated by silica-gel column chromatography (Hexane:EtOAc=9:1) and preparative TLC on silica-gel (CH₂Cl₂) to afford prelacinan-7-ol (1)² 60mg as colourless prisms. The ¹H and ¹³C NMR data³ of 1 are summarized in Table 1.

Positic	m õCª	DEPI	۲ <mark>۵Н</mark> ۱	' (<i>J</i> =Hz) ¹	H- ¹ H COSY	HMBC	NOESY	ðC°	δH
1	53.48	С	-		•	2.36.5.10a6.11a6.12	-	53.87	-
2	39.05	CH	1.72	ddg (9,10,7)	3β,12	36,46,5,106,12	116	39.52	1.77
3	30.55	CH_2	α 1.09	dddd (4.5,9,10,12) 3β,4αβ	2.4a,12	12	30.98	1.11
			β1.81	dddd (7,8,9,12)	3α,4αβ		5		1.81
4	21.37	CH ₂	α 1.47	m	3αβ,4β	3αβ,5	14	21.76	1.50
			β1.54	m	3αβ.4α	-	13		1.55
5	54.11	CH	1.53	dd (5.5,9)	4α	3β,4α,7,10αβ,11αβ,13,14	36,116,13	54.59	1.78
6	37.48	С	-		-	4β,5,13,14	-	38.10	-
7	84.37	CH	3.10	bd (6)	-OH	9αβ,11α,13,14,15	13.14	83.52	3.26
8	46.29	С	-		-	9αβ,10β,11α,15	-	47.01	-
9	34.56	CH_2	a 1.65	ddd (2,10,11)	9 6.10 6	106.116.15	14	34.79	1.68
		-	β1.34	m	9a,10a		10α		1.34
10	21.71	CH_2	a 1.22	ddd (2,10,11)	9 6 ,10 6	2,96,116	3a,98,14	22.23	1.22
			β1.37	m	9a,10a		llα		1.40
11	42.61	CH_2	α1.18	dd (1.5,11)	11β	7,9a,10a,15	12	43.18	1.24
			β1.28	ddd (2,2,11)	11α		2,5		1.75
12	14.27	CH ₃	0.84	d (7)	2	2,3α	3a.11a	14.59	0.87
13	29.67	CH3	0.98	S	-	5,14	5	30.71	1.22
14	24.58	CH3	1.01	S	-	5,7,13	9a,10a	25.00	1.05
15	25.59	CH₃	1.13	S	-	9β,11α	9β	26.45	1.36
OH			1.50		7				5.71

Table 1 ¹H and ¹³C NMR Data of Prelacinan-7-ol (1)

^a In CDCl₃, ^b From HMQC. ^c In C₅D₅N.

The molecular formula was determined to be $C_{15}H_{26}O$ by HRMS. The IR spectrum showed the absorption of a hydroxy group at 3350 cm⁻¹, and the presence of a hydroxymethine proton (δ 3.10) in ¹H NMR spectrum indicated it to be a secondary alcohol. The DEPT sequence showed the presence of four methyls, five methylenes, three methines and three quaternary carbons. The ¹H-¹H COSY spectrum showed the correlations between 1) H-12, H-2, H-3, H-4 and H-5, 2) H-9 and H-10 (dotted lines in Figure 1'). The HMBC spectrum showed the following correlations between 1) H-15 and C-7, 8, 9, 11, 2) H-14 and C-5, 6, 7, 13, 3) H-13 and C-5, 6, 7, 14, 4) H-12 and C-1, 2, 3 (bold-faced bonds in Figure 1'), and 5) H-10 and C-1, 2, 5, 8, 9, 11 (arrows in Figure 1'). Thus, the planar structure for prelacinan-7-ol should be expressed a tricyclo-[6,2,1,0^{1,5}]undecane skeleton as shown in Figure 1'. The other correlations of the ¹H-¹H COSY and HMBC spectra supported this structure.

Figure 1 Structure of prelacinan-7-ol (1), with ${}^{1}H_{-}{}^{1}H$ connectivities represented by dotted lines, the methyls' long-range ${}^{1}H_{-}{}^{13}C$ HMBC correlations indicated by bold-faced bonds and those of H-10's indicated by arrows (1').

¹H- Δδ (ppm) = δ 1 - δ (aS)-MNCB ester of 1

Figure 2 Pyridine-Induced Solvent Shifts: $\Delta\delta(=\delta CDC1_3-\delta C_5D_5N)$ in ¹H and ¹³C NMR obtained for 1 (2A, B), MNCB Shifts⁵: $\Delta\delta(=\delta 1-\delta(aS)-MNCB$ ester of 1) in ¹H NMR (CDC1₃) (2C) and NOEs detected by NOESY spectrum for 1 (2D).

The relative stereochemistry of 1 was elucidated as shown in Figure 2 based on the following lines of evidence. 1) W-type long-range couplings between H β -11 and H α -10 (J=2Hz), H β -11 and H α -9 (J=2Hz), and also H α -11 and H-7 (J=1.5Hz). 2) The arrangement of the large pyridine-induced solvent shifts⁴ of signals near the hydroxyl group in the ¹H and ¹³C NMR spectra (Figures 2A and 2B). 3) The arrangement of the $\Delta\delta(=\delta alcohol-\delta MNCB ester)^{5.9}$ values of signals near the hydroxyl group in the ¹H MMR spectrum (Figure 2C). 4) The observation of NOEs detected by NOESY spectrum in Figure 2D.

To determine the absolute configuration of 1, it was esterified with (R)- and (S)- α -methoxy- α -trifluoromethylphenylacetic acids (MTPA, 2)⁶, (aR)- and $(aS)^7$ -2-(2'-methoxy-1'-naphthyl)-3,5-dichlorobenzoic acids (MNCB, 3), and also (aR)- and (aS)-2'-methoxy-1,1'-binaphthyl-2-carboxylic acids (MBNC, 4)^{8,9}. As pointed out by Ohtani *et al.*⁶, since the hydroxy group of 1 is oriented in axial direction, "Modified Mosher's method" was inapplicable to 1 (Figure 3A). On the other hand, MNCB and MBNC methods are applicable to sterically hindered alcohols⁸. So by these methods (Figure 3B), the absolute configuration of 1 was established as depicted in formula 1¹⁰.

Figure 3 $\Delta\delta$ values in ¹H NMR obtained for the MTPA, MNCB and MBNC esters of 1. Border plane is shown by a dotted line.

Two sesquiterpenes (5, 6) with the same skeleton of prelacinan-7-ol have been found in *Eremophila georgei* (Myoporaceae) and the abusolute cofiguration of 5 was determined by X ray analysis of *p*-bromobenzoate of 5^{11} . Prelacinan-7-ol, a 2,7-diepimer of 5, is biogenetically interesting^{11,12}. And it is phytotoxic to seedlings of *Nasturtium officinale* and *Phleum pratense* at 50 ppm.

Acknowledgments The authors thank Dr. Jun Kawabata (NMR), Mr. Kenji Watanabe (MS) and Mrs. Eri Fukushi (NMR, MS) of their Faculty for their skilful measuring of spectra.

REFERENCES AND NOTES

- (a) Atkinson R. E.; Curtis R.F. Tetrahedron Lett. 1965, 297-300. (b) Bohlmann F.; Jakupovic J.;
 Zdero C. Phytochemistry, 1978, 17, 2034-2036. (c) Jakupovic J.; Jia Y.; King R.M.; Bohlmann F.
 Liebigs Ann. Chem. 1986, 1474-1477.
- mp 32.5-34.5°C (hexane), [α]²³_D -13.8° (c 0.87, CHCl₃), HRMS: m/z 222.1987, C15H₂₆O requires
 222.1985; MS (EI) m/z 222 (M⁺, 32%), 207 (10), 204 (12), 191 (57), 161 (37), 135 (37), 134 (10),
 121 (100). IR (KBr): 3350, 2950, 2870, 1445, 1040, 1020, 985 cm⁻¹.
- A JEOL EX 270 and a Bruker AM 500 spectrometers were used to record ¹H and ¹³C NMR spectra in CDCl₃ or C₅D₅N (ambient temperature). Proton and carbon chemical shifts were determined in δ units relative to TMS
- 4 Demarco P.V.;Farkas E.;Doddrell D.;Mylari B.L.;Wenkert E. J.Am.Chem.Soc. 1973, 90, 5480-5486. Pyridine-induced solvent shifts are observed in ¹³C NMR as well as in ¹H NMR and useful for stereochemical investigation.
- Fukushi Y.; Yazima C.; Endo K.; Mizutani J. The 38th Symposium on the Chemistry of Terpenes, Essential Oils, and Aromatics, Niigata, Japan, October 8-10, 1994, 2-III-12 in press. Δδ defined as Δδ=δalcohol-δMNCB ester for each proton leads to the conformation and/or configuration of the compound in question. These shifts are named MNCB shifts, and MBNC shifts are used for MBNC derivatives.
- 6. Ohtani I.; Kusumi T.; Kashman Y.; Kakisawa H. J.Am. Chem. Soc. 1991, 113, 4092-4096.
- 7. The descriptors (aR) and (aS) refer to axial chirality.
- Fukushi Y.;Yajima C.;Mizutani J. Tetrahedron Lett. 1994, 35, 599-602.
 In the present case, this rule was inapplicable in ¹³C NMR.
- 9. The ¹H NMR data (in CDCl₃) for the alcohol moieties of the respective diastereomers are summarized as the following order :(2, 3α, 3β, 4α, 4β, 5, 7, 9α, 9β, 10α, 10β,11α, 11β, 12, 13, 14, 15).
 (S)-MTPA ester. (1.73, 1.10, 1.81, 1.46, 1.53, 1.49, 4.88, 1.74, 1.42, 1.25, 1.38, 1.24, 1.31, 0.85, 0.76, 1.11, 0.93), (R)-: (1.73, 1.10, 1.81, 1.45, 1.54, 1.47, 4.89, 1.74, 1.42, 1.25, 1.38, 1.23, 1.28, 0.84, 0.77, 1.11, 0.94), (aS)-MNCB ester: (1.40, 0.97, 1.67, 1.25, 1.27, 0.66, 4.61, 1.50, 1.18, 1.05, 1.20, 0.72, 0.08, 0.77, 0.47, 0.90, 0.61), (aR)-: (1.51, 1.01, 1.74, 1.31, 1.37, 0.86, 4.59, 1.49, 1.18, 1.08, 1.20, 0.68, 0.15, 0.77, 0.46, 0.90, 0.58), (aR)-MBNC ester: (1.45, 0.98, 1.68, 1.26, 1.27, 0.72, 4.70, 1.54, 1.20, 1.08, 1.22, 0.77, 0.22, 0.77, 0.54, 0.93, 0.69), (aS)-. (1.56, 1.03, 1.76, 1.33, 1.39, 0.96, 4.68, 1.54, 1.20, 1.10, 1.22, 0.69, 0.25, 0.78, 0.55, 0.93, 0.65)
- 10. The IUPAC name of 1 is (1R, 2S, 5R, 7S, 8S)-2, 6, 6, 8-tetramethyltricyclo[6, 2, 1, 0^{1,5}]undecan-7-ol.
- (a) Carrol P.J.; Ghisalberti E.L.; Ralph D.E. Phytochemistry 1976, 15, 777-780. (b) Ghisalberti E.L., White A.H.; Willis A.C. J.Chem.Soc.Perkin II 1976, 1300-1303. (c) Total synthesis : Selvakumar N.; Subba Rao G.S.R. J.Chem.Soc., Chem.Commun. 1994, 1303-1304.
- 12. (a) Tomita B.;Hirose Y. Phytochemistry 1973, 12, 1409-1414. (b) Kirtany J K ;Paknikar S. K. Indian J. Chem. 1981, 20B, 506-507.

(Received in Japan 20 June 1994; accepted 19 August 1994)